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Abstract

Cross-sectional versus longitudinal comparisons of age-related change have often revealed differing results. In
the current study, we used within-subject task-based fMRI to investigate changes in voxel-based activations
and behavioral performance across the life span in the Reference Ability Neural Network cohort, at both base-
line and 5 year follow-up. We analyzed fMRI data from between 127 and 159 participants (20-80years) on a
battery of tests relating to each of four cognitive reference abilities. We applied a Gaussian age kernel to cap-
ture continuous change across the life span using a 5 year sliding window centered on each age in our partici-
pant sample, with a subsequent division into young, middle, and old age brackets. This method was applied
separately to both cross-sectional approximations of change and real longitudinal changes adopting a com-
parative approach. We then focused on longitudinal measurements of neural change to identify regions ex-
pressing peak changes and fluctuations of sign change across our sample. Our results revealed several
regions expressing divergence between cross-sectional and longitudinal measurements in each domain and
age bracket; behavioral comparisons between measurements showed differences in change curves for all four
domains, with processing speed displaying the steepest declines. In the longitudinal change measurement, we
found lack of support for age-related frontal increases across analysis types, instead finding more posterior re-
gions displaying peak increases in activation, particularly in the old age bracket. Our findings encourage great-
er focus on longitudinal measurements of age-related changes, which display appreciable differences from
cross-sectional approximations.
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Knowledge of the aging process is mostly informed by cross-sectional studies. The fewer studies that have
looked at longitudinal aging trajectories display variable consensus with cross-sectional findings. The cur-
rent study provides a direct comparison between cross-sectional and longitudinal measurements of change
in both neural activation and behavioral performance across several cognitive domains, providing insight
into similarities versus discrepancies. Furthermore, it adopts a method of analysis used in the MRI 4D atlas
literature to quantify continuous change across the life span through construction of neural activation “tem-
plates” that are generated from age-weighted averaging across the entire sample. Longitudinal measure-
ments of change could then be probed further for characteristics such as peaks and change fluctuations,
\enabling a better understanding of true age-related changes. /
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Introduction

Cognitive functions and their underlying neural sub-
strates change across the life span (for review, see Grady,
2012). Cross-sectional measurements of these changes
often reveal a decline in behavioral performance across
several domains including reductions in general process-
ing speed (Salthouse, 1998), episodic memory (Tulving,
2002), fluid intelligence (Kievit et al., 2014), visuospatial
and verbal working memory (Cansino et al., 2013), long-
term memory (Park et al., 2002), selective attention
(Madden, 2007), and task switching (Wasylyshyn et al.,
2011), among others. Conversely, some aspects of cogni-
tion, such as semantic priming (Laver, 2009), are shown
to remain intact or even increase with age, such as vocab-
ulary (Salthouse, 2014a; Hartshorne and Germine, 2015).
However, cross-sectional versus longitudinal compari-
sons have revealed different patterns of age-related
changes; whereas the former often reports monotonic de-
clines beginning as early as the 20s (Salthouse, 2014b),
the latter shows a preservation of function until later in life,
with older adults displaying an accelerated slope of de-
cline in domains such as fluid reasoning (De Vis et al.,
2018), memory (Salthouse, 2019), and global cognition
(Singh-Manoux et al., 2011). Furthermore, a recent longi-
tudinal meta-analysis by Tucker-Drob et al. (2009) found
support for age-related increases in the shared variance
of change across cognitive domains because of pur-
ported increased reliance on a common underlying factor
(e.g., the g factor).

At the neural level, changes in brain activation from
young to old adulthood have mainly been studied
cross-sectionally and have yielded variable results.
Some studies have observed reduced brain activity in
older compared with younger adults, which has often
been interpreted as a deficiency of processing, particu-
larly when it is linked to reduced behavioral perform-
ance (Grady et al., 1995; Rypma and D’Esposito, 2000).
Conversely, other studies have observed age-related
increases in brain activity, which has often been linked
to compensatory processing mechanisms (for review,
see Eyler et al., 2011). One prominent theory endorses a
posterior-anterior shift with aging (Davis et al., 2008), where
greater age-related activation is reported in prefrontal corti-
cal regions and reduced activation on memory tasks
(Cabeza et al., 1997, 2004; Reuter-Lorenz et al., 2000). A
compensatory interpretation has accompanied diverse
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behavioral outcomes, such as increased activation among
older adults who perform comparably to their younger coun-
terparts (Cabeza et al., 2002), when positive correlations be-
tween performance and activation selectively occur in older
adults (Grady et al., 2005), or even in the presence of im-
paired performance among older adults (Zarahn et al.,
2007). Together, these studies have suggested that older
adults typically use neural resources in prefrontal cortex
(PFC) regions to buffer against the adverse impact of aging
with the goal of aiding/maintaining performance.

Compared with the wealth of cross-sectional studies
comparing age groups, fewer studies have focused on
the intraindividual longitudinal changes that occur with
age, largely because of methodological limitations such
as attrition and measurement “impurities” introduced by
practice effects. A good portion of the longitudinal studies
that do exist has been concentrated on the episodic
memory domain. Results have varied, from memory per-
formance remaining stable over the testing period despite
functional alterations in cerebral blood flow (Beason-Held
et al., 2008a,b), to successful agers displaying higher fMRI
BOLD activation in the left hippocampus and bilateral PFC
(Pudas et al., 2013), to memory decline being linked to in-
creases in PFC activation and reduction in right hippocam-
pal volume (Pudas et al., 2018); fluctuations in hippocampal
activation across testing sessions have also been linked to
an increased slope of cognitive decline (O’'Brien et al., 2010).
Whereas longitudinal studies of behavioral changes have
broached different cognitive domains, such as processing
speed, and crystallized and fluid ability (for review, see
Ghisletta and Lindenberger, 2004), and even their link to
protective factors in buffering decline (Manly et al., 2003;
Tucker-Drob et al., 2009; Then et al., 2015), fewer studies
have comprehensively addressed the neural changes that
accompany healthy aging across different domains.

In the present study, we use longitudinal data from the
Reference Ability Neural Network (RANN) study to derive
both cross-sectional approximations of change across
the life span as well as actual longitudinal measurements
of change over a 5 year span. To characterize age-related
change, we applied a Gaussian kernel across the ages in
our sample to generate both (1) weighted neural activation
maps of change as well as (2) weighted behavioral scores
across a sliding 5 year window. This allowed us to gener-
ate “templates” of change, which is a concept borrowed
from the MRI 4D atlas literature, where attention has been
given to chronicling dynamic life span changes (Ericsson
et al., 2008; Serag et al., 2012). This allowed us to also
midlife changes, which has only recently garnered atten-
tion in the aging literature (Pudas et al., 2014; Hughes et
al.,, 2018). We refrained from adopting a statistical ap-
proach such as mixed-effects modeling because our in-
tention here was to avoid constraining our analyses to
model-based assumptions and instead explore trends in
the data in a more phenomenological vein. Given the nov-
elty of our approach and application across multiple do-
mains in a longitudinal dataset, we refrained from making
strong a priori claims. Instead, we merely hypothesize
that several regions will show insightful discrepancies be-
tween real longitudinal measurements of change and
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Table 1: Participant demographics divided by age bracket
Sex Age NART Education
Age bracket Domain N Male Female Mean SD Mean SD Mean SD
20-40years MEM 40 16 24 30.83 5.75 112.94 7.81 16.33 2.26
FLUID 47 18 29 31.19 5.55 112.07 7.73 16.17 2.51
SPEED 50 18 32 30.52 5.49 112.73 7.68 16.04 2.47
VOCAB 49 18 31 30.7 5.4 112.71 7.76 16.04 2.5
41-60years MEM 40 18 22 50.58 5.69 119.42 7.36 16.15 2.34
FLUID 42 19 23 50.48 5.57 117.94 7.83 15.95 2.25
SPEED 49 24 25 49.9 5.71 118.93 7.78 16.02 2.33
VOCAB 46 22 24 49.57 5.66 118.71 7.93 15.98 2.31
61-75years MEM 47 25 22 68.11 5.21 119.4 7.43 16.51 2.52
FLUID 59 31 28 68.71 4.89 119.57 7.47 16.56 2.62
SPEED 60 32 28 67.97 5.06 119.69 7.39 16.56 2.6
VOCAB 57 31 26 68.23 5.08 119.7 7.06 16.47 2.67

Age, NART (National Adult Reading Test) score, and education represent values at baseline. Counts (N) are given for the total number of participants in each do-

main, along with a division by sex.

cross-sectional approximations of such change, and that
areas of maximal change across time and space will differ
by domain.

Materials and Methods

Participants

A sample size of between 127 and 159 participants, de-
pending on the domain, was included in the analysis
(Table 1, list of participant demographics). As we wanted
to maximize participant inclusion, we did not restrict our
sample to only those participants who completed all 12
tasks of our design; we treated each domain separately,
which accounted for the varying sample size. A partici-
pant was only required to have data for at least one task
in a given domain. All participants were native English
speaking, right handed (Oldfield Edinburgh Handedness
Inventory; Oldfield, 1971) adults who were tested at two
time points—baseline and 5 year follow-up—with an age
range of 20-80years at baseline. Participants were re-
cruited for the study via random market advertising. All
participants were screened for severe medical or psychi-
atric conditions, head injury, hearing or vision impair-
ments, and other impediments that could interfere with
MRI acquisition. Older participants were screened for de-
mentia and mild cognitive impairment using the Dementia
Rating Scale (Mattis, 1988) at both time points. All partici-
pants had <30% of their data “scrubbed,” explained in
the fMRI data preprocessing section.

Procedure

The experiment was designed to acquire fMRI data
from participants as they performed 12 computerized
cognitive tasks in the scanner, each relating to one of four
reference abilities (RAs; Stern et al., 2014), at two time
points (baseline and 5 year follow-up). At each testing
time point, participants completed the battery of tasks
over two sessions, each lasting for ~2 h and containing 6
of the 12 tasks belonging to two of the four RAs. Tasks
within each reference domain were presented in a fixed
order; the order of the two sessions was counterbalanced
across participants. The order of administration at follow-
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up was completely randomized and did not depend on
the order of administration at baseline. Tasks presented
at follow-up were identical to those presented at baseline.
As previously mentioned, we treated each domain sepa-
rately, and thus participants were only required to have
performed at least one of the tasks in a given domain to
be included in the analysis. This was done to maximize par-
ticipant inclusion considering the difficulty of procuring com-
plete sets of longitudinal data. Therefore, the number of
participants in each domain varies. To ensure that there was
no difference in the number of tasks completed as a function
of age, we pooled together participants across all domains
(184 participants in total) and compared the total number of
tasks completed between age brackets, for both baseline
and follow-up. One-way ANOVA revealed no significant dif-
ference between age brackets, either at baseline (F 152 =
1.03, p=0.31) or follow-up (F(1,182)=0.826, p=0.36). The
mean number of tasks completed (baseline/follow-up) were
similar across young (11.69/10.9), middle (11.62/11.08), and
old (11.84/10.6) age brackets.

Before each scanning session, participants were fami-
liarized with the six tasks relevant to the current session
during an out-of-scanner training session, which was per-
formed on a laptop computer. The mode of response for
all but one task was keyboard button press; the picture-
naming task used an oral response. Training sessions
were self-paced, such that breaks could be taken when
needed, and participants were given the option of repeat-
ing the training session if desired. The assessment of task
comprehension was made based on the participant’s
subjective comfort with the task and the informed judg-
ment of a trained research assistant. For the scanning
portion, breaks were also permitted on request and could
be taken between the completion of the cognitive tasks
and the beginning of the structural scans; however,
breaks were rarely requested. In a separate session, par-
ticipants also completed a neuropsychological battery;
results from this battery will not be addressed in the cur-
rent article.

Stimulus presentation
Stimuli were back-projected onto an LCD monitor posi-
tioned at the end of the scanner bore. Participants viewed
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the screen via a tilted mirror system, which was
mounted on the head coil. When needed, vision was
corrected to normal using MR-compatible glasses
(SafeVision). Responses were made on a LUMItouch re-
sponse system (Photon Control). E-Prime version 2.08,
operating on a PC platform, was used for stimulus deliv-
ery and data collection. Task onset was electronically
synchronized with the MRI acquisition device.

Reference ability in-scanner tasks

Twelve cognitive tasks, each belonging to one of four
reference domains, were presented in the scanner. A brief
description of each task, divided by domain, is provided
below (for a more thorough description, see Stern et al,,
2014). For all tasks, with the exception of picture naming,
responses were made via button press; picture naming,
instead, required a vocal response. For episodic memory
(MEM), fluid reasoning (FLUID), and vocabulary (VOCAB)
domains, accuracy, measured as the proportion of cor-
rect trials to total trials included, was analyzed for each
task. For the processing speed (SPEED) domain, re-
sponse time data were analyzed for each task. For the re-
mainder of the document, an abbreviated version for each
reference ability will sometimes be used: MEM, FLUID,
SPEED, and VOCAB. We also will interchangeably use the
terms “domain” and “reference ability” to refer to our RAs.

MEM. For all three episodic memory tasks, both study
and test phases were scanned together and cannot be
separated in the analysis. The percentage of correct trials
served as the behavioral variable of analysis. The tasks
were as follows. (1) With logical memory, participants
were presented with a story scenario on the computer
screen. They were required to read the story and answer
detailed multiple-choice questions regarding the content,
choosing one of four possible answers. (2) In word order
recognition, in the study phase, participants were pre-
sented with a list of 12 words, 1 word at a time, on the
computer screen and asked to remember the order of
word presentation. In the test phase, participants were
presented with a probe word at the top of the screen and
four choice words below, and were asked to indicate
which of the four choice words was presented subse-
quent to the probe word. (3) For paired associates, in the
study phase, participants were presented with a list of 12
word pairs, 1 pair at a time, on the computer screen and
were asked to remember the word pairings. In the test
phase, participants were presented with a probe word
and four choice words below and asked to select which
word was previously paired with the probe word.

FLUID. The percentage of correct trials served as the
behavioral variable of analysis. The tasks were as follows.
(1) In matrix reasoning (adapted from Raven, 1962), par-
ticipants were presented with a matrix divided into nine
cells (3 x 3) that reflected an unspecified rule, with the
bottom right cell remaining empty. Participants had to de-
cide which of eight figure choices, presented below the
matrix, best completes the sequence pattern. (2) In letter
sets (Ekstrom et al., 1976), participants were presented
with five sets of letters, with four of them expressing a
common rule (e.g., contains no vowels). Participants were
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asked to infer the rule and identify the letter set that devi-
ates from it. (3) In paper folding (Ekstrom et al., 1976), par-
ticipants were presented with a paper folded in a specific
sequence with a set of holes punched through it. They
had to decide which of six options reflected the configura-
tion of the holes on the paper when unfolded.

SPEED. Reaction time served as the behavioral vari-
able of analysis. The tasks were as follows. (1) In digit
symbol (adapted from Salthouse, 1998), participants were
presented with a code key at the top of the screen
consisting of nine number (values ranging from one to
nine)-symbol pairs. Below the code key, a single number-
symbol pair was presented, and participants were asked
to indicate whether the pair was present in the code key.
(2) In letter comparison (Salthouse and Babcock, 1991),
participants were presented with two strings of letters
alongside one another, each containing three to five let-
ters. They were asked to indicate whether the strings
were the same or different. (3) In pattern comparison
(Salthouse and Babcock, 1991), participants were pre-
sented with two figures alongside one another, each
consisting of connected lines that formed different config-
urations. They were asked to indicate whether the figures
were the same or different.

VOCAB. The percentage of correct trials served as the
behavioral variable of analysis. The tasks were as follows.
(1) With antonyms (Salthouse and Kersten, 1993), partici-
pants were presented with a probe word in capital letters
at the top of the screen. Below the probe word, four
choices of words were listed. They were asked to indicate
which word possessed a meaning that was most dissimi-
lar to that of the probe. (2) With picture naming, partici-
pants were presented with single images and asked
to identify the picture by vocal response. Images were
selected from the WJ-R Psycho-Educational battery
(Woodcock et al., 1989; Salthouse, 1998). (3) With syno-
nyms (Salthouse and Kersten, 1993), participants were
presented with a probe word in capital letters at the top
of the screen. Below the probe word, four choices of
words were listed. They were asked to indicate which
word possessed a meaning that was most similar to that
of the probe.

fMRI data acquisition

Image acquisition was performed using a 3 T Philips
Achieva Magnet scanner. Participants performed 12 fMRI
tasks over the course of two 2 h MR imaging sessions;
the same procedure was followed at both baseline and
again at the 5 year follow-up. At the onset of each ses-
sion, a scout T1-weighted image was acquired to deter-
mine the participant’s position. A T1-weighted MPRAGE
scan was performed to capture participants’ brain struc-
tures, with the following parameters: TE, 3 ms; TR, 6.5
ms; flip angle, 8°; in-plane resolution, 256 x 256 voxels;
field of view, 25.4 x 25.4 cm; and 165-180 slices in the
axial direction; slice thickness, 1 mm; slice gap, 0 mm. All
scans used a 240 mm field of view. For the EPI acquisi-
tion, the following parameters were used: TE, 20 ms; TR,
2000 ms; flip angle, 72°; in-plane resolution, 112 x 112
voxels; slice thickness, 3 mm; slice gap, 0 mm. FLAIR
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(fluid-attenuated inversion recovery), DTI (diffusion tensor
imaging), ASL (arterial spin labeling), and a resting BOLD
(7 min) scan were additionally acquired; however, these
data are not considered in the current article. A neuroradi-
ologist examined each participant’s scan for abnormality,
and any significant findings were reported to the partici-
pant’s primary care physician.

fMRI data preprocessing

FMRIB Software Library (FSL) version 5.0 and custom-
written Python code was used to preprocess the imaging
data. The preprocessing pipeline for each participant’s
task-related scan was performed using FSL (Smith et al.,
2004) with the following steps: (1) generation of within-
participant histograms for noise detection (FEAT); (2) spa-
tial realignment to the middle volume (MCFLIRT); (3) slice
timing correction; (4) creation of brain mask from the first
volume; (5) high-pass filtering (T = 128 s); (6) prewhitening
for attenuation of autocorrelation; (7) general linear model
(GLM) estimation with motion-related nuisance regressors
and convolved double-gamma hemodynamic response
function (HRF); and (8) nonlinear registration of functional
to structural brain images with normalization into MNI
space (FNIRT).

Time-series modeling

For each participant, general linear models were cre-
ated, consisting of block-based time series for fluid rea-
soning, speed and vocabulary tasks, and event-related
models for the memory tasks. For the memory tasks,
while the encoding, retention, and retrieval phases were
imaged, only the retrieval phase was analyzed. A single
regressor was used to compare task performance to an
intrinsic baseline, which was defined in one of two ways
depending on the analysis. For block design task models,
a boxcar function denoting the onset and offset of each
task block was used. The regressor was obtained by con-
volving this boxcar function with the canonical HRF. The
intrinsic baseline was defined as the interval between task
blocks during which no stimuli were presented on the
screen. For event-related task models, the intrinsic base-
line was modeled as the combination of all nontask peri-
ods. Each stimulus presentation was modeled from the
onset of the stimulus to the response, using correct trials
only, with the regressor obtained by convolving the stimu-
lus presentation with the canonical HRF. For each partici-
pant’s 12 tasks, a standard GLM was run on each scan,
using the appropriate regressor, to generate a parameter
estimate (B8) map. A gray matter mask was applied to the
data to include only those voxels with a mean gray matter
probability of >50% across all participants. This reduced
the number of active voxels to 24,055. Analyses were per-
formed on this masked subset.

Analytical approach

Data were analyzed using custom-written MATLAB
codes (MathWorks). For between-task comparison in be-
havioral performance, all scores were standardized via z-
transformation, with the mean and SD calculated at the
first visit across all participants for each task separately.
For speed tasks, z-score values were sign inverted to
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correspond with accuracy scores from other task do-
mains, such that higher scores always reflect better per-
formance. For adequate comparisons between testing
time points, z-score transformations of both baseline and
follow-up data were made based on the mean and SDs
calculated at baseline. For analyses of all behavioral and
voxel-wise fMRI data at both baseline and follow-up, be-
havioral performance and activation maps, respectively,
for the three tasks pertaining to a given domain were aver-
aged. That is, for each participant, a single activation map
per domain was first created by averaging across the
tasks pertaining to each RANN domain.

Age kernel

We were interested in ascertaining how domain-related
activation changes across the life span, comparing cross-
sectional approximations of change at baseline to real
changes derived from the longitudinal data. We first ex-
plain how baseline data were analyzed, followed by longi-
tudinal calculations of change.

We used an age kernel (explained in greater detail in the
section to follow) to enable a finer-grained consideration
of change as a function of the age of the participants: the
age kernel. The kernel creates a weighted average, across
all participants, of a measured phenomenon (i.e., neural
activation or behavioral performance), enabling some age
specificity by assigning greater weight to participants
whose age falls closer to a particular target age. This is a
compromise between averaging across all participants
(no age specificity, but less statistical noise) and consider-
ing single participants only (great age specificity, but
more statistical noise). As a first measurement of change
in task-related activation, we applied our kernel across all
voxels to generate change curves. We then followed this
up with an application of the kernel to subsets of voxels
selected from ROls centered on each voxel in our mask.

Neural age-weighted maps of baseline data

Generation of age-weighted activation () maps. To in-
vestigate cross-sectional approximations of change across
age in the baseline data, we used a Gaussian smoothing
function to create activation maps at 1 year age increments
by integrating across all participant’s age-weighted activa-
tion maps. The aim was to use each participant’s domain
activation map, by weighting its signal, to generate a mean
domain activation map for each target age. The weight, or
the degree to which a participant’s signal contributed to the
mean signal, depended on the participant’s age with respect
to the target age. For a given domain and target age (f), the
procedure was as follows. (1) We applied a Gaussian kernel
to age, centered on a target age (t), to obtain a weight (w) for
each participant’s age (t). Weights were derived according
to the Gaussian function, defined as follows:

1 ~(t-1)?
—e 2 o2
ovV2m

where the width, or SD (o), of the kernel is a somewhat
subjective parameter determined by the size and distribu-
tion of the dataset; lower values of o weigh the tails of the

W(t/7 t) =
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Figure 1. Schematic of the generation of weights defined by the Gaussian kernel (o = 4) centered at a target age of 35years
old. Dashed Gaussian demonstrates the kernel sliding across and centered on each year of age present in the dataset. In the
equation of brain activation at target age (t), w(t, t) is the weight (w) assigned to a participant’s age (t;) given the target age (t)
and v; is the participant’s domain activation (8) map. In the weighing of each map v;, the voxel index is preserved. The exam-
ple brains above demonstrate the resulting output, which is weighted activation maps at each year of life in the sample, for

each of the four domains.

age distribution less, leading to a sharp localization
around the target age, whereas higher values create a
more dispersed “blunt” distributional spread. As we had a
relatively large sample size, we followed the choice, o = 4,
of Ericsson et al. (2008) who, in their generation of a 4D
structural atlas, found that good results could be obtained
using 3 < o < 5. Good results in their analysis were de-
fined as not too heavily weighing individual samples yet
not smoothing out over age-dependent variation, either of
which could occur with too small or too large values of o,
respectively. To assess the reliability of our choice in o
given the range of this window, we also performed the
kernel regression using o values of 3 and 5. Similar results
were obtained across these o values. As a reminder, the
kernel was centered on each age in our dataset, ranging
from 20 to 80 years, with each age serving as a target age,
and weights assigned to all participant’s ages accord-
ingly. (2) After obtaining age weights for a target age (f),
we multiplied each participant’s domain activation map
by their age-defined weight to create a weighted map per
participant. (3) We then summed these weighted maps
across participants and divided by the sum of the weights
to create a single mean activation map for the target age.
An example of the kernel centered at target age (t = 35
years old) can be found in Figure 1. (4) The result was a
weighted activation map (24,055 voxels) per year of life
(61 time points: 20-80 years) for each of the four domains.

Activation map change curves estimated from cross-
sectional data at baseline. We were interested in quantify-
ing the change in age-weighted activation maps across
time by deriving a single change in activation (AA value
per 5 year sliding window; e.g., 20-25, 21-26). To do so,
we subtracted the activation map at time t from the map
at time t + 5. Given the age span of 20-80years at base-
line, change maps could only be calculated up until 75—
80 years, yielding 56 change maps per domain. We then
took the mean across all voxels. This resulted in a 56 x 1
vector of AA values per domain, with positive values
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reflecting 5 year age-related increases in activation and
negative values reflecting 5 year age-related decreases in
activation.

Age-weighted activation ROIls and change curves esti-
mated from cross-sectional data at baseline. We also
wanted to obtain a more refined and precise measure of
age-related change across the brain. To do so, rather
than generating age-weighted maps per year of life by
summing across all participant age-weighted activation
maps (24,055 weighted voxels), we generated 24,055 ROI
spheres, centered on each voxel, and age weighted the
subset of voxels comprised by each ROI. ROls were gen-
erated by centering a 12-mm-radius sphere on each voxel
in our gray matter mask and selecting those voxels that
fell within this sphere. Because of the irregularity of the
gray matter mask, voxel count by ROI varied (median, 193
voxels; range, 16-428 voxels). Per ROI, we first obtained
the index of voxels corresponding to a given ROl and se-
lected only those voxels from participants’ domain activa-
tion maps. Next, for each target age, we multiplied each
participant’s voxel activation values by their age-defined
weight (corresponding to step 2 above) and then summed
across all participants and divided by the sum of the
weights (corresponding to step three above); this yielded
a weighted ROI (between 16 and 428 voxels) per year of
life (61 time points: 20-80 years) for each of the domains
(four). To create the change curves, for each ROI of each
domain, we subtracted the ROI voxel activation values at
t from the map at t +5 and averaged across all voxels
comprising that ROI. This rendered a 56 x 1 vector of AA
values per ROI (24,055), per domain (four).

Neural age-weighted change maps of longitudinal data
Generation of age-weighted activation change maps.
To generate longitudinal change maps and their subse-
quent change curves, we inverted the process described
above: instead of averaging across participants with the
age kernel and then subtracting between different target
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ages, we now subtracted the activation maps at t from
t + 5 for each participant first, and then applied the kernel
to create age-weighted change maps at each 5 year slid-
ing window.

For a given domain and target age (t), the procedure
was as follows. (1) We first calculated the difference be-
tween the activation map at t and the map at t + 5 within
each participant. (2) Next, for each target age “interval”
(e.g., 20-25 years), we created age-weighted change
maps by multiplying each participant’s domain activation
change map by their age-defined weight to create a
weighted change map per participant. The weight as-
signed corresponded to their age at baseline. (3) As be-
fore, we then summed these weighted change maps
across participants and divided by the sum of the weights
to create a single mean activation difference map for the
target age interval. (4) The result was a weighted activa-
tion change map (24,055 voxels) per sliding 5 year win-
dow of life (61 time points: 20-80 years) for each of the
domains (four), centered on age at baseline. However, to
render the longitudinal results comparable to the baseline
results, we only considered the change maps between 20
and 75 years (the latter corresponding to the age interval
of 75-80 years), resulting in 56 time points.

Activation map change curves of longitudinal measure-
ments. To generate change curves, we again took the
mean across all voxels. As before, this resulted in a 56 x 1
vector of AA values per domain.

Age-weighted activation ROIs and change curves of
longitudinal measurements. We followed a procedure
similar to the one described for the baseline approxima-
tion only inverting the weighting and subtraction steps.
For the longitudinal differences, for each target age, per
ROI, per domain, we first subtracted a participant’s ROI at
baseline time (f) from that at follow-up time (t +5). We
then age weighted these difference values and averaged
them across all voxels within that ROI, again generating a
56 x 1 vector of AA values per ROI (24,055), per domain
(four).

Age-weighted behavioral performance scores

Baseline approximation change curves. We applied the
same Gaussian age kernel procedure as described above
to behavioral performance to additionally observe how it
changes across the life span. The same weights were
generated for each target age, only this time, instead of
multiplying the age-defined weight by the participant’s
activation map, we multiplied it by the participant’s per-
formance. As before, for each target age nested within
each domain, the age-weighted performance scores
were summed across all participants and divided by the
sum of the weights. This yielded a single behavioral
value for each target age (61 age points: 20-80years)
for each of the domains (four). As before, we were inter-
ested in quantifying the change in age-weighted behav-
ioral performance across age by deriving a single
change in performance (AP) value between each year.
For each domain, we subtracted the weighted perform-
ance score at t from the score at t + 5, yielding a 56 x 1
vector of AP values per domain.
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Longitudinal change curves. Longitudinal change
scores were calculated by first subtracting each partici-
pant’s performance at t from their performance at follow-
up time (t + 5). For each domain, we next calculated the
performance change score per target age by multiplying
each of the participant’s change values by the weight as-
signed to their age at baseline with respect to the given
target age. We then summed across all participants per tar-
get age, which yielded a 61 x 1 vector of AP values per do-
main. To render the longitudinal results comparable to the
baseline results, we only considered the change values be-
tween 20 and 75 years (the latter corresponding to the age
interval of 75-80 years), resulting in 56 time points.

Comparisons between baseline approximations and longi-
tudinal neural change: change curves per ROI divided by
age bracket

We next wanted to compare baseline to longitudinal
measurements of change between each ROI to see where
the differences curves were most similar and most differ-
ent to one another; that is, where baseline approximations
adequately capture true changes and where there is high
discrepancy between the two. To do this, we divided
curves into age brackets comprising young age, middle
age, and old age. Such a division was motivated by the
idea that middle adulthood is often an overlooked time
span in the aging literature, with comparisons typically fo-
cusing on extreme ends of the age distribution, and we
wanted to take advantage of the expanse of our dataset.
We defined young age as 20-40years, which reflects the
changes in activation over the period of 20/25-40/
45 years; middle age as 41-60 years, covering the change
interval of 41/46-60/65 years; and old age as 61-75 years,
covering the change interval of 61/66-75/80 years. Our ra-
tionale for such age boundaries was determined by a few
factors. We specifically defined older age as the period
comprising 60-80 years based on prior literature (Reuter-
Lorenz and Park, 2010). As for the young and middle age
brackets, as previously mentioned, given the limited number
of studies investigating midlife changes, there is not a stable
precedence to follow that delineates the transition from
young to middle adulthood. Therefore, we relied on the age
distribution of our sample population and the few examples
from the literature explicitly testing a middle age sample.
Placing a boundary at 40 years of age allowed us to create
rather evenly distributed tertile intervals, with the addition of
having some founding in the literature (Ankudowich et al.,
2016). Next, for each ROI (24,055) and domain (four), we
compared segments of the two change curves comprising
each of the three age brackets separately by computing the
mean absolute error (MAE), which measures the average
error between paired observations expressing the same
phenomenon, regardless of the direction. It is calculated by
simply subtracting one curve from the other and taking the
mean of the absolute value of the differences. This rendered
a map (24,055 ROI values) of MAE values per age bracket
(three), per domain (four). To assess areas of high similarity
or difference, we ultimately considered only those values
falling beyond the 2.5 or 97.5 percentiles of the distribution,
respectively.
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Longitudinal change curves per ROI

As the longitudinal change curves reflect the true changes
that occur over a 5 year age span, we chose to focus the
rest of the analyses on ROI regions of maximum signed
change in the longitudinal measurement only.

Integrated change by age bracket. We were interested
in the areas exhibiting maximum change, in terms of
both increases and decreases in activation, across the
life span. We therefore calculated the integral of change
values on segments of the change curves comprising
each of the three age brackets, separately, per ROI
(24,055) and domain (four). For each age bracket seg-
ment of the change curve, we first divided them into
negative and positive change values to distinguish be-
tween cumulative increases versus decreases in activa-
tion. We then calculated the integral, or the area under
the curve, for change values of each sign. The integral
method that we used was trapezoidal, which approxi-
mates the area of the region between two units, or as in
our case between two age intervals (e.g., 21/26-22/27),
for each of the partitioned age intervals by essentially
treating the difference between each age interval as a
trapezoid and calculating its area. The integral over the
entire age-bracketed segment is achieved by summing
across the areas of each age interval. In this way, we
obtained two total change values, reflecting positive or
negative change, for each age bracket. As this proce-
dure was performed per ROl and domain, we thus ob-
tained maps (24,055 ROI values) for each domain (4),
each age bracket (three), and each sign of change (two).
As before, we were mainly interested in establishing
which areas displayed extreme activation increases or
decreases in each age bracket. Thus, we considered
only those values that fell beyond the 97.5 percentile
upper bound of increases in activation (positive) and
beyond the 2.5 percentile lower bound of decreases in
activation (negative).

Peak change across the life span. We also wished to
establish the age bracket in which a peak change
across the life span occurred for each of the ROI
change curves in each domain. For each ROI in each
domain, we located when a peak positive maximum and
a peak negative change occurred in the change curve.
We then color coded them by age bracket and gener-
ated peak maps (24,055 ROI peak values) per domain
(four) that reflected the age bracket assignment.

Age dependence variability of longitudinal change.
Last, we measured the variability in the direction of
change in the longitudinal measurements across all do-
mains, separately for each age bracket. That is, we
wished to see which voxels fluctuated in the sign of
change across all four domains. For each age bracket,
we indexed when a voxel displayed at least one change
of sign (i.e., zero crossing) in each domain and mapped
those voxels displaying overlap across all domains. For
example, imagine that a voxel shows at least one zero-
crossing (i.e., sign fluctuation) in the young age bracket
in each of the four domains. This voxel would be in-
dexed and shown as “consistently variable change” ac-
cording to our definition.
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Results

Neural change curves averaged across voxels

We first present the change curves computed by taking
the average across all voxels from the change maps, for
both the baseline approximation and longitudinal meas-
urements (Fig. 2, top). We calculated the similarity be-
tween baseline and longitudinal change curves per
domain using MAE, where lower values indicate greater
similarity. According to MAE, the FLUID domain displayed
the highest similarity between baseline and longitudinal
measurements (MAE =1.52), whereas the MEM domain
displayed the highest difference (MAE = 3.82), followed by
SPEED (MAE =1.82) and VOCAB (MAE =1.72). However,
as one can appreciate from the figure, there do not appear
to be radical differences between baseline and longitudi-
nal measurements, either in shape or magnitude, with
peaks occurring at similar points for each across all
domains.

Behavioral performance change curves

We next looked at the performance change curves for
both baseline approximations and longitudinal measure-
ments (Fig. 2, bottom). We again calculated MAE for the
change curve comparisons per domain. According to
MAE, the SPEED domain displayed the highest similarity
between baseline approximations and longitudinal meas-
urements (MAE =0.09), whereas the FLUID domain dis-
played the highest difference (MAE=0.14), followed by
the VOCAB domain (MAE =0.13) and finally the MEM do-
main (MAE =0.11). Interestingly, whereas the baseline ap-
proximations of change for the VOCAB domain indicated
troughs of performance decreases, notably in the change
from ~58 to 63 years of age (i.e., represented as a base-
line age of 58 years on the graph), the longitudinal meas-
urements always showed increases in performance
across the life span. Overall, whereas baseline approxi-
mations tended to display consistent declines in perform-
ance over time, longitudinal measurements displayed a
more variable pattern of both increases and decreases,
with only SPEED showing a rather constant increase in
the slope of decline.

Baseline approximations compared with longitudinal
neural change: change curves per ROl divided by age
bracket

Next, we compared the baseline approximation to the
longitudinal change curves for each ROI, centered on
each voxel in our gray matter mask, across the entire
brain, for each domain. These comparisons were made
by dividing the curves into segmented age brackets that
approximately represented tertiles in the age distribution
at baseline and calculating MAE on these segments. We
were interested in which brain areas displayed maximum
similarities and differences between the two measure-
ments, defined as <2.5 or >97.5 percentiles, respec-
tively. An example of the map of these regions, one for
each domain, can be found in Figure 3. We also list the
top three ROIs expressing the greatest difference (Table
2) and the top three ROIs expressing the greatest
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Figure 2. Five year change curves of baseline approximations and longitudinal measurements. Left panel, Neural change curves.
The values reflect the age-weighted differences between the activation map at time (t) subtracted from the map at time (t + 5) aver-
aged across all voxels (y-axis) plotted separately for each domain. Right panel, Behavioral performance change curves. The values
reflect the age-weighted differences in behavioral performance at time (t) subtracted from performance at time (t + 5; y-axis) plotted
separately for each domain. This 5 year window of difference, expressed as a single value, is plotted for the age at baseline (x-axis).
Baseline approximations (green) and real longitudinal change measurements (pink) are plotted together to visually appreciate simi-

larities versus discrepancies.

similarity (Table 3) for each age bracket in each domain.
As can be observed from the figure, the MAE provided a
good approximation of similarity and difference for each
of the domains presented. Among the differences, those
greatest across all domains were observed in the right
hemisphere for the old age bracket. Overall, it appeared
that for the young and middle age brackets, the greatest
differences for all domains were expressed in frontal re-
gions, often left lateralized, including the superior and
middle frontal gyri. The one exception was for the VOCAB
domain, where the middle age bracket displayed highest
differences in the calcarine fissure, middle occipital lobe,
and the cerebellum crus 1. Conversely, the greatest differ-
ences between baseline and longitudinal measurements
for the old age bracket were observed in posterior re-
gions, such as the right inferior/middle occipital cortex,
lingual gyrus, and cerebellum crus 6, and the bilateral cer-
ebellum crus 1. Only for the SPEED domain, the orbital
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middle frontal gyrus was among the regions that ex-
pressed maximum difference in the old age bracket.
There appeared to be less uniformity across domains
among the regions expressing similarities between both
measurements. However, interestingly, whereas posterior
regions such as the inferior/middle occipital cortex dis-
played the greatest differences between measurements
for the VOCAB domain in the old age bracket, anterior
regions such as the bilateral superior frontal gyrus consis-
tently showed the greatest similarity. Additionally, where-
as regions expressing both maximum similarity and
difference in the old age bracket were typically right later-
alized, only the SPEED domain displayed left-lateralized
similarity between measurements, including the inferior
parietal lobule [Fig. 3, bottom left (this similarity was a
common decrease in activation)]. Furthermore, more pari-
etal regions such as the supramarginal, postcentral, and
inferior parietal gyri and precuneus displayed similarity,
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Figure 3. Axial brain slices expressing areas of greatest similarity and difference between baseline approximations and longitudinal
measurements of change for each domain. We selected an age bracket to represent per domain. For each domain map, we display
the regions for a given age bracket (indicated in the graph title) displaying both the greatest difference between curves (MAE >97.5
percentile; depicted in blue) and the greatest similarity (MAE <2.5 percentile; depicted in yellow). The number next to each brain
slice indicates the z-coordinate. To the top right, the two smaller brain slices represent the two ROIs displaying the greatest similar-
ity (yellow) and difference (blue) between curves, which are represented in the graphs below. Graphs depict the change in activation
(v-axis) for each 5 year window (plotted on the x-axis at baseline age). The shaded blue region denotes the age bracket segment on
which MAE was calculated. Note: slices are mirror flopped where the right hemisphere is expressed on the left side.

along with limbic structures such as the caudate, puta-
men, and hippocampus.

Longitudinal changes across the life span
Integrated change by age bracket

We wanted to establish which areas exhibited maximum
change, in terms of both increases and decreases in activa-
tion, focusing now only on the longitudinal measurements.

July/August 2021, 8(4) ENEURO.0273-21.2021

This was achieved by calculating the integral of both nega-
tive and positive change values in each age bracket of each
ROI and domain. We then selected the extreme ends of the
distribution, or values >97.5 percentile and <2.5 percentile
(Fig. 4; for all four domains, both the maximum negative and
positive values were highest for the young age bracket,
which decided the extreme ends of the color bars). The top
three areas expressing maximum positive change and maxi-
mum negative change, for each age bracket and domain,
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Table 2: AAL Regions displaying the greatest difference between baseline approximations and longitudinal measurements

Coordinates

Domain Age group X y z AAL region Hem MAE N. ROIs
MEM Young —24 57 3 Superior frontal gyrus (DL) L 35.65 57
27 54 3 Middle frontal gyrus L 31.06 132
-30 54 -3 Superior frontal gyrus (ORB) L 30.96 2
Middle —42 —63 —24 Cerebellum crus 1 L 29.46 16
-21 63 12 Superior frontal gyrus (DL) L 28.64 48
—42 -57 —24 Cerebellar crus 6 L 28.41 56
Oid 30 -84 -18 Lingual gyrus R 39.74 94
36 -84 -15 Inferior occipital lobe R 37.86 56
27 -84 -18 Cerebellar crus 1 R 37.58 47
FLUID Young -21 63 9 Superior frontal gyrus (DL) L 28.22 61
-9 63 12 Superior frontal gyrus (Med) L 21.89 157
27 57 12 Middle frontal gyrus L 19.84 64
Middle -9 45 -9 Superior frontal gyrus (MedOrb) L 22.64 10
—6 33 —6 Cingulate gyrus (Ant) L 21.20 73
6 39 -9 Superior frontal gyrus (MedOrb) R 20.71 9
Old 39 —69 —24 Cerebellar crus 1 R 20.15 63
—42 —63 —24 Cerebellar crus 1 L 18.64 16
36 —72 -21 Cerebellar crus 6 R 17.19 111
SPEED Young —45 45 -9 Inferior frontal gyrus (ORB) L 21.61 30
—42 45 —6 Middle frontal gyrus (Orb) L 20.05 18
36 54 6 Middle frontal gyrus R 18.70 105
Middle -30 54 -3 Superior frontal gyrus (Orb) L 18.49 2
-33 54 -3 Middle frontal gyrus (Orb) L 17.99 18
18 —-93 —-12 Lingual gyrus R 16.02 49
Oid 24 36 -21 Middle frontal gyrus (Orb) R 19.17 8
36 —-90 0 Inferior occipital lobe R 18.75 52
36 —-90 3 Middle occipital lobe R 18.66 42
VOCAB Young -39 51 -6 Middle frontal gyrus (Orb) L 33.88 18
-30 54 -3 Superior frontal gyrus (Orb) L 33.36 2
—-33 54 0 Superior frontal gyrus (DL) L 32.88 40
Middle 30 -90 9 Middle occipital lobe R 23.33 88
15 —96 3 Calcarine fissure + surrounding cortex (V1) R 21.23 23
39 —69 —24 Cerebellar crus 1 R 20.26 51
Old 36 —-90 3 Middle occipital lobe R 32.27 103
36 -90 0 Inferior occipital lobe R 30.82 92
39 —69 —24 Inferior occipital lobe R 24.29 27

The three regions per age bracket and domain displaying the greatest difference, via MAE metric at the >97.5 percentile, are presented. Coordinates refer to the
center voxel of the ROIl. As MAE is a negative-oriented error metric, higher values indicate higher differences. The “N.ROIs” column represents the number of
ROls in the >97.5 percentile subset (601 ROIs/comparison) for which the left voxel is located in the AAL (automated anatomical labeling) region listed. For in-
stance, in the case of the first row entry, the left dorsolateral superior frontal gyrus displayed the greatest difference at x, y, and z locations (—24, 57, and 3), but
this region was among the top 601 ROIs displaying the greatest differences for 57 of the 601 ROIs. Hem, Hemisphere; L, left; R, right; DL, dorsolateral; Orb, or-

bital; Med, medial.

are listed in Tables 4 and 5, respectively. Overall, there were
more cumulative positive changes than negative changes
for the FLUID domain, as can be observed from the color
bar of the graphs; this stood in contrast to MEM, for which
change was overall more negative. For the MEM domain,
the anterior cingulate expressed maximum increases in acti-
vation in both the young and middle age brackets but not in
the old age bracket. In a similar vein, the left superior fron-
tal gyrus, which expressed maximum decreases in activa-
tion in both the young and middle age brackets, was not
present for the old age bracket. For the FLUID domain,
the right cerebellum was among the regions expressing
maximum activation increases in the young age bracket,
but were not among the regions of highest positive
change in the middle and old age brackets; a similar find-
ing was observed for the left medial superior frontal
gyrus. Conversely, the bilateral postcentral and Rolandic
operculum were among the regions of highest positive

July/August 2021, 8(4) ENEURO.0273-21.2021

change only for the old age bracket. For the SPEED do-
main, similar to the MEM domain, the anterior cingulate
cortex (ACC) expressed maximum increases in activa-
tion in the young and middle age brackets but to a re-
duced extent in the old age bracket. Instead, the bilateral
cerebellum crura 3-6 displayed maximum increases in
activation in the old age bracket, which was not among
the top regions expressing change in the young and mid-
dle age brackets. Furthermore, maximum decreases in
activation in the medial/superior frontal gyrus, which
were present in the young and middle age brackets,
were present to a lesser degree in the old age bracket,
with the latter expressing maximum decreases in more
left-lateralized inferior frontal operculum. For the VOCAB
domain, the most salient finding was the stability in the
expression of maximum change across all age brackets,
with maximum positive changes consistently occurring
in posterior regions such as the inferior/middle occipital
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Table 3: ROIs Denoted by AAL area displaying the greatest similarity between baseline approximations and longitudinal

measurements
Coordinates
Domain Age group X y z AAL region Hem MAE N. ROIs
MEM Young 27 3 0 Putamen L 0.42 109
15 —6 66 Superior frontal gyrus (DL) R 0.47 27
51 -39 54 Inferior parietal gyrus R 0.49 43
Middle 15 -84 39 Cuneus R 1.28 26
42 —51 57 Superior parietal gyrus R 1.58 17
—6 —69 48 Precuneus L 1.65 72
Old 63 -33 24 Superior temporal gyrus R 0.22 92
60 -33 27 Supramarginal gyrus R 0.28 80
42 21 48 Middle frontal gyrus R 0.39 41
FLUID Young -30 12 -9 Undefined L 0.37 111
48 —75 30 Middle occipital lobe R 0.38 31
-12 6 63 Supplementary motor area L 0.38 11
Middle 36 —36 54 Postcentral Gyrus R 0.21 14
39 —66 42 Angular Gyrus R 0.23 105
30 9 9 Putamen R 0.27 14
Old 33 —-12 27 Parahippocampal R 0.33 28
21 24 60 Superior frontal gyrus (DL) R 0.39 51
36 -15 -21 Hippocampus R 0.42 18
SPEED Young 6 —60 36 Precuneus R 0.29 96
39 21 —6 Insula R 0.36 28
-18 -33 6 Undefined L 0.37 24
Middle 12 15 60 Supplementary motor area R 0.24 35
66 27 15 Superior temporal gyrus R 0.28 56
30 9 51 Middle frontal gyrus R 0.28 69
Old -57 —18 45 Inferior parietal gyrus L 0.23 5
-3 12 36 Cingulate gyrus (Mid) L 0.26 26
—24 12 51 Middle frontal gyrus L 0.32 44
VOCAB Young —6 -3 -9 Undefined L 0.34 138
-15 3 15 Caudate L 0.52 59
15 0 18 Caudate R 0.95 34
Middle -6 18 30 Cingulate gyrus (Ant) L 0.34 36
3 18 27 Cingulate gyrus (Ant) R 0.37 22
—45 6 30 Inferior frontal gyrus (opercular) L 0.44 60
Old 18 36 48 Superior frontal gyrus (DL) R 0.22 49
—6 30 48 Superior frontal gyrus (Med) L 0.27 32
9 33 51 Superior frontal gyrus (Med) R 0.27 42

The three regions per age bracket and domain displaying the greatest similarity, via MAE metric at the <2.5 percentile, are presented. Coordinates refer to the
left voxel of the ROI. As MAE is a negative-oriented error metric, lower values indicate higher similarity. The “N.ROIs” column represents the number of ROIs in
the <2.5 percentile subset (601 ROIs per comparison) for which the center voxel is located in the AAL (automated anatomical labeling) region listed. For instance,
in the case of the first row entry, the left putamen displayed the greatest similarity at x, y, and z locations (—27, 3, and 0), but this region was among the top 601
ROls displaying the greatest differences for 109 of the 601 ROIs. Hem, Hemisphere; L, Left; R, right; DL, dorsolateral; Med, medial; Ant, anterior; Mid, middle.

lobe, and maximum negative changes occurring in fron-
tal regions such as the inferior/middle frontal gyrus.

Peak longitudinal change across the life span

We wished to establish in which age bracket a peak
change occurred when considering the entire change
curve. Therefore, for each ROI in a given domain, we in-
dexed the maximum value of the absolute value of the
change curve and assigned it a color label based on the
age bracket in which it occurred and the original sign
of the peak (negative or positive; Fig. 5). For the MEM
domain, it was clear that the bilateral (para)hippocampus
and cerebellar vermis lobules 1-3 displayed the highest
increases in activation for the older age bracket, where-
as areas such as bilateral thalamus, anterior cingulate,
cerebellar vermis lobules 4-6, and middle occipital lobe
displayed peak decreases in activation. However, it
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appeared that, overall, the maximum changes were oc-
curring for the middle age bracket, in terms of both
peak increases and decreases in activation, with a
slight left hemispheric bias in the medial/superior tem-
poral lobe and cerebellum crura 4 and 5 toward peak in-
creases in activation; additionally, the precuneus,
cuneus, and supplementary motor area displayed peak
increases, whereas the bilateral cerebellar crus 6, insula,
and inferior frontal gyrus (pars orbitalis) and right superi-
or temporal pole displayed peak decreases. For the
FLUID domain, as could be expected from the integrated
change analysis, the maximum changes were mainly
positive peaks, with broad areas of the bilateral temporal
lobe and midline extending from the cuneus to the ante-
rior cingulate expressing positive peaks in middle age
and young age brackets, respectively. Positive peaks
were seen in the left fusiform, bilateral cerebellum,
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Figure 4. Areas of maximum change in longitudinal measurements. The brain regions displaying the greatest integrated positive
change at >97.5 percentile (yellow) and the greatest integrated negative change (blue) are presented for each age bracket in each
domain. The color bars to the right of each image reflect the scale of change for each domain. The extreme ends of the scale were
chosen based on the maximum and minimum change values observed across all age brackets; these values were always greatest
for the young age bracket. The number next to each brain slice indicates the z-coordinate. Note: slices are mirror flopped where the

right hemisphere is expressed on the left side.

bilateral (para)hippocampus, right supramarginal gyrus,
midcingulate, and bilateral putamen. Negative peaks in
middle age were mainly observed bilaterally along the
rostrocaudal axis of the prefrontal cortex. For the SPEED
domain, greater peak decreases in activation were ob-
served for young age bracket. Interestingly, some of
these peaks were located in the right inferior parietal lo-
bule and angular gyrus, areas that, along with their left
counterparts, have been implicated in attention and ac-
tion guidance (Singh-Curry and Husain, 2009). Other
areas of peak activation decreases in the young were the
bilateral fusiform and lingual gyri, bilateral inferior/middle
temporal lobe, and bilateral inferior frontal triangularis as
well as the middle frontal gyrus. Peak decreases were
observed for old age in the vast regions of the bilateral
putamen, superior temporal pole, supplementary motor
area, insula, Rolandic operculum, and orbital inferior
frontal gyrus, whereas peak increases in activation were
observed in the precuneus, midcingulate, and primarily
left cerebellar crura 4 and 5, and right anterior cingulate.
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For the VOCAB domain, there were large peak increases
in activation for the young age bracket along the midline
from the medial superior frontal to the posterior cingulate
cortex and bilateral along the precentral and postcentral
gyri. The old age bracket also displayed peak activation
increases in a portion of the midcingulate in addition to
the bilateral inferior/medial temporal cortex and fusiform,
the left superior temporal cortex, the right cerebellar
crura 4-6, and primarily the left anterior cingulate. Peak
decreases in activation were mainly found for the middle
age bracket and extended through large portions of the
bilateral cuneus, precuneus, calcarine, lingual gyrus, and
posterior cingulate. Decreases in the precuneus were
also observed for the young age bracket. While several
regions maintained the same sign of peak change, only
differing in age bracket, a few stood out for flipping signs
between domains. For instance, whereas the bilateral
vermis lobules 4 and 5, the posterior portion of the right
anterior cingulate, and the left middle frontal gyrus all
displayed peak decreases in activation for MEM in the
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Table 4: ROIs Denoted by AAL area expressing the greatest integrated positive change for longitudinal measurements

Coordinates

Domain Age group X y z AAL region Hem Integral N. ROIs
MEM Young -3 30 -6 Cingulate gyrus (Ant) L 220.34 71
3 33 —6 Cingulate gyrus (Ant) R 213.26 35
9 36 -9 Superior frontal gyrus (MedOrb) R 212.14 9
Middle -3 42 -6 Superior frontal gyrus (MedOrb) L 142.20 10
-9 48 -3 Cingulate gyrus (Ant) L 141.01 66
3 33 -6 Cingulate gyrus (Ant) R 136.41 32
Old 15 -15 —24 Undefined R 132.92 302
15 -9 -15 Hippocampus R 99.99 9
-15 -6 —-12 Hippocampus L 93.77 41
FLUID Young -21 63 9 Superior frontal gyrus (DL) L 534.51 49
-9 63 12 Superior frontal gyrus (Med) L 388.11 85
27 57 12 Middle frontal gyrus (MedOrb) L 369.12 57
Middle -21 63 9 Superior frontal gyrus (DL) L 340.66 41
-9 63 12 Superior frontal gyrus (Med) L 282.29 91
15 -93 -12 Lingual gyrus R 241.39 30
Old 24 —-93 -12 Lingual gyrus R 254.76 18
27 —-90 -9 Inferior occipital lobe R 221.99 23
15 63 15 Superior frontal gyrus (Med) R 188.51 46
SPEED Young -6 45 -9 Superior frontal gyrus (MedOrb) L 265.70 10
—6 39 —6 Cingulate gyrus (Ant) L 236.82 105
6 39 -9 Superior frontal gyrus (MedOrb) R 223.88 8
Middle -6 45 -6 Superior frontal gyrus (MedOrb) L 204.89 10
18 —96 -3 Calcarine fissure + surrounding cortex (V1) R 201.23 31
-9 48 -3 Cingulate gyrus (Ant) L 194.51 97
Old 24 —42 -33 Undefined R 117.47 145
18 —96 -3 Calcarine fissure + surrounding cortex (V1) R 111.69 14
-6 51 6 Superior frontal gyrus (Med) L 105.11 39
VOCAB Young 30 —-90 9 Middle occipital lobe R 375.25 88
15 —96 3 Calcarine fissure + surrounding cortex (V1) L 355.38 31
33 -90 0 Inferior occipital lobe R 336.67 85
Middle 30 -90 9 Middle occipital lobe R 349.44 88
15 —-96 3 Calcarine fissure + surrounding cortex (V1) R 333.87 31
33 -90 0 Inferior occipital lobe R 310.89 81
Old 15 —96 3 Calcarine fissure + surrounding cortex (V1) R 252.60 30
30 -90 9 Middle occipital lobe R 242.30 71
33 -90 0 Inferior occipital lobe R 205.04 79

The three regions per age bracket and domain displaying the greatest integrated positive change at the >97.5 percentile, are presented. Integrated change was
calculated via trapezoidal summation in the segmented age bracket. Coordinates refer to the left voxel of the ROI. Higher values signify greater positive change.
The “N.ROIs” column represents the number of ROIs in the >97.5 percentile subset (601 ROIs/comparison) for which the center voxel is located in the AAL (auto-
mated anatomical labeling) region listed. For instance, in the case of the first row entry, the left anterior cingulate gyrus displayed the greatest positive change at
X, ¥, and z locations (-3, 30, and —6), but this region was among the top 601 ROIls displaying the greatest positive change for 71 of the 601 ROls. Hem,

Hemisphere; L, left; R, right; DL, dorsolateral; Med, medial; Ant, anterior; Med, medial.

old, they displayed peak increases in activation in the old
for SPEED. In addition, posterior regions belonging to
the bilateral middle occipital lobe, cuneus, and angular
gyri that displayed peak increases in activation in the
young age bracket for the FLUID domain instead dis-
played peak decreases in activation for the SPEED do-
main for the same age bracket.

Stability of longitudinal change across domains.

As a final analysis, we wished to measure the stability of
longitudinal change across domains in each age bracket,
defined as voxels expressing at least one sign change
(positive—-negative or negative—positive) in each of the four
domains [Fig. 6, display of these regions (colored regions
display fluctuations, whereas white regions display con-
stant sign change in at least one domain)]. As can be ob-
served from the figure, all age brackets contained regions
expressing change of a constant sign, in either the
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negative or positive direction, at least once in all four
cognitive domains. In terms of regions of sign fluctua-
tions, both the young and middle age bracket displayed
change fluctuations in slightly left-lateralized regions
such as the caudate, putamen, Rolandic operculum, in-
sula, and superior temporal pole. The young age bracket
displayed further fluctuations in anterior regions includ-
ing the anterior and midcingulate, whereas the middle
age bracket displayed sign fluctuations in regions includ-
ing the precuneus and posterior cingulate. However,
perhaps the most striking finding occurred in the old age
bracket, where only a few regions displayed sign fluctua-
tions present in all four domains; that is, the greatest sta-
bility in direction of change was witnessed in the old age
bracket. Among those regions with expression change
were the right cerebellar crura 4 and 5, right postcentral
gyrus, bilateral medial cingulate and precuneus, and left
thalamus.
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Table 5: ROIs Denoted by AAL area expressing the greatest integrated negative change for longitudinal measurements

Coordinates

Domain Age group X y z AAL region Hem Integral N. ROIs
MEM Young —24 57 3 Superior frontal gyrus (DL) L —580.56 69
—27 54 3 Middle frontal gyrus L —523.74 179
-30 54 -3 Superior frontal gyrus (Orb) L —516.44 2
Middle -30 54 -3 Superior frontal gyrus (Orb) L —445.79 2
-33 54 -3 Middle frontal gyrus (Orb) L —405.77 18
-30 54 3 Middle frontal gyrus L —379.80 115
Old —51 15 36 Inferior frontal gyrus (opercular) L —294.61 30
—48 18 39 Middle frontal gyrus L —288.31 78
—51 12 39 Precentral gyrus L —269.83 23
FLUID Young 36 9 60 Middle frontal gyrus R —105.61 269
51 12 42 Precentral gyrus R —-82.72 77
51 15 39 Inferior frontal gyrus (opercular) R —78.94 110
Middle 36 9 60 Middle frontal gyrus R —100.77 266
51 12 42 Precentral gyrus R —78.12 83
51 15 39 Inferior frontal gyrus (opercular) R —74.91 104
Oid 45 15 48 Middle frontal gyrus R —72.82 277
39 -21 27 Fusiform R —64.45 18
51 18 39 Inferior frontal gyrus (opercular) R —63.05 107
SPEED Young —42 45 -9 Inferior frontal gyrus (Orb) L —471.46 38
—42 45 -6 Middle frontal gyrus (Orb) L —452.86 18
36 51 6 Middle frontal gyrus R —400.16 176
Middle 45 45 6 Middle frontal gyrus R -317.70 172
42 45 0 Inferior frontal gyrus (triangular) R —292.00 236
42 45 -3 Inferior frontal gyrus (Orb) R —278.74 53
Old —45 45 -9 Inferior frontal gyrus (Orb) L —297.48 53
—48 39 0 Inferior frontal gyrus (triangular) L —274.64 47
45 45 6 Middle frontal gyrus R —222.84 187
VOCAB Young —42 45 -9 Inferior frontal gyrus (Orb) L —445.70 28
-39 48 -6 Middle frontal gyrus (Orb) L —424.14 18
—42 51 3 Middle frontal gyrus L —346.89 148
Middle 36 51 6 Middle frontal gyrus R —324.85 185
—42 51 6 Middle frontal gyrus L —251.18 178
—42 48 6 Inferior frontal gyrus (triangular) L —243.30 44
Old —42 45 -9 Inferior frontal gyrus (Orb) L -320.47 40
—42 45 -6 Middle frontal gyrus (Orb) L —286.34 18
—48 42 0 Inferior frontal gyrus (triangular) L —224.47 187

The three regions per age bracket and domain displaying the greatest integrated negative change at the <2.5 percentile, are presented. Integrated change was
calculated via trapezoidal summation in the segmented age bracket. Coordinates refer to the left voxel of the ROI. Lower values signify greater negative change.
The “N.ROIs” column represents the number of ROIs in the <2.5 percentile subset (601 ROIs per comparison) for which the center voxel is located in the AAL
(automated anatomical labeling) region listed. For instance, in the case of the first row entry, the left dorsolateral superior frontal gyrus displayed the greatest neg-
ative change at x, y, and z locations (—27, 57, and 3), but this region was among the top 601 ROlIs displaying the greatest negative change for 69 of the 601 ROls.
Hem, Hemisphere; L, left; R, right; DL, dorsolateral; Med, medial; Ant, anterior; Med, medial.

Discussion

The aim of the present study was to quantify and
compare cross-sectional approximations to longitudinal
measurements of change across the life span and to fur-
ther probe characteristics of this change in time (i.e., age)
and space (i.e., ROI regions) specifically in longitudinal
measurements. To this end, we tested participants in-
scanner on a battery of cognitive tasks at two time points
and used both behavioral performance and neural voxel
activations to quantify continuous change across the life
span. In a preliminary comparison of voxel-averaged neu-
ral change curves between cross-sectional and longitudi-
nal measurements, we showed that change curves did
not greatly differ, in either shape or magnitude, across do-
mains. However, this was performed simply to gain a first
impression of our data, as coarse whole-brain voxel-aver-
aged change is not typically considered, possessing dubi-
ous ecological validity and being potentially uninformative
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in washing out nuanced effects. When we computed age-
weighted ROI activation maps, region-specific change
curves, instead, showed varying similarity between the
two measurements. A further division of each curve into
age brackets and comparison between measurements re-
vealed areas displaying high dissimilarity. We further iden-
tified regions of maximum positive and negative change
for each domain and age bracket in longitudinal measure-
ments only, and were interested in the topography of
when peak changes occurred across the life span.

The majority of what we know concerning age-related
neural and cognitive changes comes from cross-sectional
studies, despite limitations of potential cohort effects
confounding true age-specific changes. Cross-sectional
comparisons of different ages have generally shown
negative associations between age and performance on
several cognitive abilities (Salthouse, 2009). However,
longitudinal evidence has shown a different pattern of
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Figure 5. Domain maps depicting the age bracket in which peak negative or positive changes occurred across the entire life span change
curve. For each ROI in each domain, we located the overall peak change value, regardless of sign, across the entire change curve (essentially
the maximum absolute value). The center voxel of each ROl was then color coded depending on the age bracket in which the peak was lo-
cated and whether it was a positive or negative peak (see color bar to the right of the figure). The number next to each brain slice indicates
the z-coordinate. Note: slices are mirror flopped where the right hemisphere is expressed on the left side. Y, Young; M, middle age; O, old.

change, with sustained or even increased performance change mainly displayed performance declines across
into later life (Ronnlund et al., 2005; Schaie and Willis, the life span, except for the vocabulary domain, longitudi-
2010; Salthouse, 2014b). Our current results comparing  nal measurements displayed periods of stable increases
cross-sectional to longitudinal change reflect these dis-  in performance across the life span. The notable excep-
crepancies; whereas cross-sectional approximations of  tion was the processing speed domain, for which declines

MIDDLE

Figure 6. Maps of each age bracket depicting regions of sign change present in all four domains. For each domain, we indexed the
ROIs in which the change curve contained at least one zero crossing, denoting a sign change (i.e., positive-negative or negative—
positive). We then selected those ROIs that displayed overlap in sign change across all four domains. These voxels are mapped
separately for the young (red), middle (green), and old (blue) age brackets. The number next to each brain slice indicates the z-coor-
dinate. Note: slices are mirror flopped where the right hemisphere is expressed on the left side.
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were observed beginning at ~35years of age, with the
steepness of decline increasing with age. This latter find-
ing has also been observed in a recent longitudinal study
on midlife cognitive changes (Hughes et al., 2018).

In terms of age-related neural changes, one of the
most reported cross-sectional findings is the increase in
activation in frontal brain regions, which has often been
interpreted as a compensatory response to counteract
neurocognitive decline (Davis et al., 2008; Drag and
Bieliauskas, 2010). Interestingly, when comparing age-
bracketed segments of the change curves between
cross-sectional and longitudinal measurements, we ob-
served that the maximum differences for all domains
were expressed in predominantly left-lateralized frontal
regions among young and middle age brackets. In the
old age bracket, maximum differences were observed in
more posterior regions, including the right occipital cor-
tex, lingual gyrus, and bilateral cerebellum. When looking at
maximum integrated change by age bracket in the longitudi-
nal measurements, we further see that negative changes, or
activation declines, were predominantly present in inferior,
middle, and superior frontal regions across all age brackets.
Conversely, maximum integrated positive change showed a
more variable pattern across age brackets and domains,
with the vocabulary domain showing the highest stability
across all age brackets; importantly, maximum negative
change occurred in frontal regions such as the inferior/mid-
dle frontal gyrus, whereas maximum positive change oc-
curred in posterior regions such as the inferior/middle
occipital lobe. This latter finding is particularly notable as vo-
cabulary is a cognitive ability that shows improvement with
age (Salthouse and Davis, 2006; Hartshorne and Germine,
2015), additionally observed in our own data. While we can-
not infer that improved behavioral performance is linked to
neural changes in the regions listed above, recruitment of
frontal resources to maintain or increase behavioral out-
comes may not strictly apply to all cognitive domains and
should be confirmed in longitudinal data. However, our find-
ings more generally suggest that age-related increases in
frontal regions reported in cross-sectional analyses may not
adequately reflect true longitudinal neural changes. Even in
terms of absolute change values between age brackets, the
old age bracket expressed the lowest positive change val-
ues across all four domains, eliminating the possibility that
frontal regions, while still overall higher for the old age
bracket, were simply excluded by our threshold. Some work
has highlighted the importance of characterizing the magni-
tude of BOLD response in terms of relative activation
change when comparing younger to older adults (Spreng et
al., 2010), showing that while some regions may be lower for
older adults, the summation of BOLD response across all re-
gions and trials does not differ between groups (Buckner et
al., 2000). Our findings suggest that frontal regions do not
display over-recruitment, either in relative change between
regions within the old age bracket or in absolute change be-
tween age brackets. While ample cross-sectional evidence
exists supporting increased frontal recruitment with age
across different cognitive domains (Cabeza, 2002; Milham
et al., 2002; Turner and Spreng, 2012; Hakun et al., 2015a),
some longitudinal evidence suggests the under-recruitment
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of frontal regions, specifically on a semantic judgment
task (Nyberg et al., 2010). Other longitudinal PET find-
ings have reported both reductions and increases in cer-
ebral blood flow across prefrontal cortex regions when
performing verbal and figure recognition tasks (Beason-
Held et al., 2008a,b). However, longitudinal findings are
equivocal, with yet other evidence echoing claims of
frontal over-recruitment, particularly when assessing ex-
ecutive tasks (Hakun et al., 2015b). Furthermore, one
crucial aspect that is not covered by our analysis is how
changes in performance relate to age-related increases
or declines in activation. For instance, a longitudinal
study by Vidal-Pifeiro et al. (2019) found that low levels
of frontal activation during an episodic memory task was
associated with lower memory performance in older
adults over an 8 year period. More longitudinal work is
needed to assess the role of frontal cortical regions in
the aging process.

In addition to our findings suggesting a lack of support
for age-related frontal increases as measured by maxi-
mum integrated change, the analysis of peak change
across age brackets again revealed more posterior re-
gions displaying peak increases in activation in the old
age bracket. In all four domains, portions of the cerebel-
lum, including the vermis, displayed peak positive
changes in the old age bracket. A cross-sectional review
by Bernard and Seidler (2014) reported task-related in-
creases in cerebellar activation with age, particularly in
motor learning and execution tasks, arguing that cerebel-
lar morphology is comparable if not better than the pre-
frontal cortex at predicting performance. For the memory
domain, one of the few areas displaying peak increases in
activation among the old age bracket was the bilateral
hippocampus. Both cross-sectional and longitudinal work
has found age-related hyperactivation in the hippocam-
pus, which has been linked to factors such as declines in
memory performance and amyloid and tau accumulation
(Leal et al., 2017; Huijbers et al., 2019). Peak decreases in
activation were otherwise observed in the old age
bracket, primarily bilaterally along the inferior—superior
axis of the frontal cortex, and posteriorly in the medial oc-
cipital cortex and calcarine. However, the majority of both
peak increases and decreases in activation occurred in
the middle age bracket, where peak increases in activa-
tion were found in slightly left-lateralized regions of the
medial/superior temporal lobe and cerebellar crura 4 and
5, and peak decreases in activation found in the bilateral
cerebellar crus 6, insula, and right superior temporal pole.
Limited longitudinal evidence has shown that memory
performance during midlife can predict an individual’s
memory-related BOLD response 15-20 years later (Pudas
et al., 2014) and that the difference between an individu-
al’s chronological age and biological age, as predicted
from machine-learning models, is associated with cogni-
tive function in early life and adulthood (Elliott et al., 2019).
These studies highlight the need that greater focus be
placed on this under-represented interval in the life span.

One additional region that stood out in both analyses of
maximum longitudinal change and the distribution of
peak change across the life span was the ACC. In both
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the memory and processing speed domains, the ACC ex-
pressed maximum increases in activation in the young
and middle age brackets, but maximum increases were
not present in the old age bracket for memory and to a re-
duced extent for processing speed. However, when look-
ing at when peak positive change occurs across the life
span, we see that positive peaks were in fact observed for
the old age bracket in the right ACC for the speed domain
and in the left ACC for the vocabulary domain. Prior
cross-sectional and longitudinal work have both reported
reduced metabolic uptake with age (Pardo et al., 2007,
2020), and that this reduction correlates with cognitive
decline (Pardo et al., 2007). These findings encourage fur-
ther work on how task-related activation changes in the
ACC relate to aging.

Finally, we looked at regions that expressed fluctuation
in the direction of change in each age bracket. The most
striking finding was that the old age bracket displayed
the least sign fluctuation in change across all four do-
mains. This was an interesting finding, as we might have
expected greater instability given that aging is typically
related to increased intraindividual and interindividual
variability in neural response because of a broad range
of factors (Caspers et al., 2014) reduced neural selectiv-
ity for stimuli (for review, see Koen and Rugg, 2019).
However, it should be highlighted that we measured sta-
bility as fluctuation in the directionality of change across
all four domains. It could well be the case that certain do-
mains might express change in a specific direction in old
age, whereas others do not, a possibility precluded by
the current analysis.

One potential criticism of the current study is the lack of
statistical inference of the regions involved in the process-
ing of each domain. We did not restrict comparisons be-
tween cross-sectional and longitudinal change to voxels
deemed significant by univariate analysis, instead choos-
ing to focus on activation change in a continuous manner
across participants and treating all voxels as reflecting
true signal. We do believe though that application of the
age-weighted kernel, while by no means a rigorous statis-
tical test, is sufficient at smoothing over nonuniform
change that could have arisen because of statistical
noise. We have no reason to believe that certain voxels
were subject to systematic biases, given that spatial
smoothing was also performed in preprocessing and that
participants with a high number of motion artifact were
excluded from the analysis. However, in addition to our
modest sample size, we do acknowledge that the regions
we report in each domain may not be “selective” to that
domain with the inferential rigor of a formal statistical test.
In a future application, it might be profitable to refine
threshold setting across domains or measure covariance
patterns of change to be able to more adequately assess
unique versus overlapping change across domains.

Another future direction will be the integration of other
factors associated with cognitive and neural changes
across the life span. One important factor, which has
formed the crux of age-related changes in the majority of
longitudinal studies and reviews, has been age-related
cerebral volume changes (for review, see Hedman et al.,
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2012). For instance, some studies have linked age-re-
lated structural brain reductions to increased functional
activation (Hakun et al., 2015b; Fjell et al., 2016).
Additionally, we could focus on a proper integration of
brain—-cognition relations, beyond simple over-recruit-
ment of frontal activation, for better clarification of
whether potential over-recruitment is linked to success-
ful compensatory processes (Vallesi et al., 2011), as
manifested by maintained or increased age-related be-
havioral outcomes, or by inefficiency of processing as
the brain attempts to cope with negative age-related
change.
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